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Fast coarsening in unstable epitaxy with desorption
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Homoepitaxial growth is unstable towards the formation of pyramidal mounds when interlayer transport is
reduced due to activation barriers to hopping at step edges. Simulations of a lattice model and a continuum
equation show that a small amount of desorption dramatically speeds up the coarsening of the mound array,
leading to coarsening exponents between 1/3 and 1/2. The underlying mechanism is the faster growth of larger
mounds due to their lower evaporation rdt81063-651X99)51006-4

PACS numbes): 68.55—a, 05.70.Ln, 68.45.Da, 81.10.A]

I. INTRODUCTION have a simple cubic structure with neither bulk vacancies nor
Pattern-forming instabilities in homoepitaxial crystal ©V€'hangs allowed. The basic processes included in our

growth, first predicted by Villai1], have been identified model_ are the deposi_tion of atoms ontq the surface at a rate
experimentally for a wide range of systerfd-4]. Their F, thellr su_rface diffusion, and evap.orat|on from the surface.
ubiquity results from additional activation barriers to hop- The diffusion of surface adatoms is modeled as a nearest-
ping at step edges, which reduce interlayer transport and leaweighbor hopping process at the ratg=kq exp(—Ep /kgT),

to the creation of pyramidal featurémound$ on the sur- whereE is the hopping barriefT is the substrate tempera-
face. Much theoreti_cal work in this _area_has been ir_lspired byure, andkg is Boltzmann’s constant. The prefacky is the

a formal analogy with phase ordering kinet[&€-8|, aiming  attempt frequency of a surface adatom and is assigned the
in egrtlcular at an understandln_g of the coarsening f_aw value 183 s 1. The barrier to hopping is given b§p=Eg

~1** for the increase of the typical mound siZewith time +NEy+(n—n;)@(n,—n;)Eg, whereEg, Ey, andEg are

which is observed in experimen{s8,4] and simulations . . .
[9,10]. Different universality classes of phase ordering argnodel parameters,is the number of in-plane nearest neigh-

distinguished, among other things, by the presence or af2ors before the homy; andn; are the number of next-nearest

sence of conservation laws for the order parameter and oth&@ighbors in the planes beneath and above the hopping atom

dynamically relevant field§11]. In general, conservation before @) and after ) a hop, andd(x) =1 if x>0, and 0

laws slow down the dynamics and hence imply smaller val-otherwise(cf. Ref.[9] for a more detailed description of the

ues for the coarsening exponent.1/ mode). The evaporation of a surface adatom occurs at the
In this Rapid Communication we discover a similar effectrate ke, = kg €Xp(—Eg,/kgT), WhereE.,=Eq+ nEy with E,

in unstable homoepitaxy: Using kinetic Monte CafliMC)  being the energy for evaporation of a free surface adatom.

simulations and continuum equations of motion, we show The simulations were carried out on square 3300 to

that even a minute amount of desorption drastically changegogx 600 lattices with periodic boundary conditions. The ba-

the coarsening law for the typical mound size. In all previougjq get of model parameters and growth conditions used was
work desorption was neglected, which implies volume CO”'ES:1.54 eV, Ey=0.23 eV, Eg=0.175 eV, andF=1/6

servation for the growing filmi1]. Analytic approachefs,7] m .
. onolayer(ML)/s (set | of Ref.[9]). Under these conditions
and numerical work3,7] then suggest the upper bound 1/ the equilibrium evaporation flux i613] F eq=ko ex — (Eo

<1/4 to hold in theabsenceof in-plane anisotropy, while in A3 42 ;
the anisotropic case Siegdrt2] has recently shown that +2EN)/kBT)]N(1.O 107%)x F, and the actual desorption
prate is a few times larger. The robustness of the observed

1/z<1/3. By contrast, in the presence of desorption we o behavi d b ing_ diff d
tain values 1/% 1/z<1/2. For the isotropic continuum equa- P€navior was tested by using diiferent temperatures an
evaporation barriergg, and by including the “incorporation

tion we find clear evidence for a crossover fronz=14/4 X g . i
(the value attained without desorptify7]) to 1z=1/2 with ~ radius” effect whereby the incoming atom is placed at the
increasing film thickness, while for the solid-on-solid KMC Sité with the highest number of lateral nearest neighbors
model typical values range fromz& 0.3 to 0.42, to be com- Within a square area of siZ& centered on the site of inci-
pared with 12~0.19-0.26 found for the same model in the dence[9].
conservative casf9]. Detailed investigation of the growth ~ Simulation results are shown in Fig.[14]. As the de-
kinetics reveals that the mechanism of speedup is a depegorption rate increases, coarsening becomes faster and the
dence of the evaporation rate on the mound size, leading teoarsening exponent ZL/becomes much bigger than the
faster growth of big mounds at the expense of smaller onesange of values observed in previous simulation work using
the same model without desorpti¢@]. Even a rather small
Il. MONTE CARLO SIMULATIONS amount of desorptiofil6] thus drastically affects the coars-

To study epitaxial growth with desorption, we used a€ning exponent regardless of the details of the simulation
solid-on-solid KMC model in which the crystal is assumed tomModel (such as the model parameters and the incorporation
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v —_—————r oo I1l. CONTINUUM EQUATIONS

Further confirmation of the dramatic effect of evaporation
comes from the continuum theory, where the surface is mod-
eled by a smooth, space and time-dependent height function
H(x,t). Our starting point is the standard continuum equa-
tion for unstable epitaxy1-3,5—7, to which the leading
order effect of desorption is added in terms of a slope-
dependent growth raté(|VH|):

100

Evaporation rate

Mound size

Mound size

ﬁ:—KAZH—V-[f(|VH|2)VH]+V(|VH|). (1)
10 ¢ ®a at
In the absence of desorptidf(u)=F, the external flux. For

a vicinal surface with step spacing (tilt u=a//, with lat-

tice constanta), the growth rate according to BCF theory
reads[17] Vgce(/) = (Fxs//)tanh¢/xs) wherex,=2\Dr

is the desorption length, depending on the diffusion coeffi-

FIG. 1. Lateral mound sizé(t) evolution for different model ~ CientD and the desorption rateAfrom a flat surface.
parameters and growth conditions obtained in KMC simulations. TO use the BCF-expression also for near singular surfaces
The model parameters used wéig=1.9 eV atT=750 K, R, =0 [18], we introduce an effective, tilt-dependent step spacing
(stars and R;=3 (circles, Eq=2.0 eV at T=750 K, R=3 /&, Which equals” in the step flow regimey>a//, and
(crosses and Eq=1.75 eV atT=670 K, R;=3 (triangles. The  reduces to the terrace size or island distaftt® /', for
slopes indicated are the results of least-squares fitting. The erramallu. Desorption is considered a small, perturbative effect
bars of the exponent@stimated from run-to-run variationare of in the sense that
the order of 0.01. Inset: size-dependent contribution to the evapo-
ration rate of a single mound determined on lattices of size 21, 23, a=/plXs<1, (2
27, 31, 35, 41, 51, 61, 71, 81, and 101 with periodic boundary
conditions. Data show the average over 25 runs, in each of whicivhich means that it is much more likely for an atom to be
about 1000 ML were deposited. The full line has the fotm captured at a step than to desorb. Under this condition the
=A/¢Y5, and is consistent with coarsening exponents for the saméerrace size/p should not be influenced by desorption. A
model parameters. plausible  formula for /e is  /e(u)=/p[1

+u?(/pla)®]" Y2 and the growth rate is then/(u)
radiug. In the regions of fits shown in Fig. 1 the mound = Vecr < ei(U)]. Because of Eq(2), /en(u)</p<x, for
slope stays approximately constant, indicating that thé!l Slopes, and therefore we can expargte to obtain
asymptotic regime has been reached. An interesting feature V(u)=~F{1—(a23)[1+u3(/pla)?] 1. 3)
of Fig. 1 is the crossover observed for the cBse 0 after
approximately 1000 ML were deposited. We discuss the unThe growth rate varies betwedn(0)=F[1—(1/3)a?] for
derlying change in the mechanism of coarsening below. the singular surface anfé for u>a//p.

Figure 2 shows plane and perspective views of the surface In the second term on the right-hand side of Hg.we set
morphology after approximately 2000 ML have been deposf (u?) = f,[1— (u/mg)?], which leads to a stable selected
ited. Pyramidal mounds are separated by narrow, deeplopemy [5], as is observed in our lattice simulatiof0].
troughs. The surface profile is clearly asymmetric with flat, We subtract the deposited film thicknes$;—H—Ft and
rounded mound tops and sharp, deep valleys. For the case ifscale time, lateral space, and height variables to arrive at
R;=3, mounds are much shallower and bigger, having alséhe dimensionless forr]
more regular structure. In both cases, however, very fast

. . oh 2/3
coarsening is observed. = —A%h—V.{[1-(Vh)2]Vh}- 0‘—.
1+(Vh)?

°
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The one-dimensional version of E@) with an evaporation
rate ~(Vh)? was considered in a different context by Em-
mott and Bray[21].

We integrated Eq(4) numerically (for the method and
system sizes, s€d5]) and found similar behavior as in the
lattice model. After an initial fast increase of the lateral
mound size¢, the pattern coarsens as in the case without
evaporationg~w~tY4[3,7] (w is the mean square width of

FIG. 2. Surface morphology in KMC simulations after approx- the surfacew?=(h?) whereh=h—(h) denotes the height
mately 2000 ML have been deposited. The displayed part of th@rofile relative to its mean This behavior is transient and
lattice is 300< 300 (plane view, left and 100< 100 (perspective  eventually crosses over to a fast asymptotic increase of the
plot, right. mound size and the surface width &sw~t2, The mound
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100 rrrr—— ogy. In particular, one expects generically a dependence of
' ] the average growth rate of a mound on its size, while for
conserved growth only thiguctuationsin the growth rate are
size dependerj23]. To see how this can affect the coarsen-
ing law, assume that the growth velocity of a mound depends

Q on its size¢ as
[#4]
2 ook . v(§)=vo—Av(é), ®
2 | 1 N
b 3 | 1] where Av (&)~ &7 with a positive prefactor, so that large
i K -//- ] mounds grow faster. IE is the only macroscopic length in
b : f 1 the system, the size differences between mounds are also of
= N I I the order ofé. The time scale on which a small mound is
00 00 eliminated by its larger neighbors is then given by
N PO (Mmeyx o ~w/Av (&), since the surface widthv equals the typical
10° 10° 10" 10° 10° height of mounds. Using that the mounds have a constant
Time slope,w~ ¢, it follows that é~tY(***) or z=1+ v. For suf-

ficiently small v this implies fast coarsening.

BT A A 3 : A well-known mechanism for a size-dependent growth

strengthsa”/3=10 "% 107°% 107, ..., 10" obtained by nu-  a46 j5 the Gibbs-Thomson-effect: For spherical droplets in

merical integration of the continuum equation. The transient reg'm%quilibrium the evaporation rate is proportional to the curva-

£~tY* persists until evaporation dominates the surface driven[ 1% h ithin the Wil Frenkel imati

coarsening at,~ a4, the crossover time to asymptotic fast coars- [Lir:; thegéromﬁe r\ellvtle Iir; 0]? thel Sl‘cc))rr]r-nSr;e nWi?h_ afgrgxw;]ﬁ;on

; _tlr2 ; ; ; ; 4 =4

ﬁar:g?hggxta.. The scaling plot in the inset shows tinbe o and mounds in our lattice simulations are more conical in shape,

with rather straight sides and rounded regions of lateral ex-

size £(t) is shown in Fig. 3 for values af%/3 ranging from tent~/"p at the tips. Assuming that desorption occurs pref-
10" Y2 to 10°%2, decreased by a factor 188 between suc- erentially from the tip regions, the evaporation rate of a
ceeding curves. The transieti® regime is absent for the mound of size¢ has a contribution proportional to the ratio
strongest evaporationaf/3=10"12 and becomes more Of the fip area~/% to the mound area- ¢, leading tov
pronounced asy is decreased. A similar crossover is ob- =2 and 1#=1/3. For a more quantitative estimatey (¢)
served in the KMC simulations witR;=0 (stars in Fig. L =~ Was determined in a sequence of simulations on small square
The evaporation term in E¢4) breaks the up-down sym- lattices of lateral size 21,23.. up to 101[24]. As initial
metry (he— —h) [22,25. When it is dominantin the fast configuration on each of them a single mound was prepared.
coarsening regime at late timethe surface morphology is 't persisted during deposition of 1000 monolayers, and the
asymmetric. The profile shown in Fig. 4 consists of conical2Verage evaporation rate was determined from a sequence of
mounds separated by well defined, narrow valleys. Notic> "uns. The data presented in Fig. 1 show tha(¢)>0
that there are no “negative mounds.” The grayscale plo@ndv=1.5+0.1, which is consistent with direct observations
shows the cellular arrangement of the cones. The observedf coarsening on large latticéef. Fig. 1.

features are very similar to results of simulations in Fig. 2.  An analytical evaluation oAv(¢) is possible for the con-
tinuum equation, which will also allow us to derive the scal-

ing of the crossover time&f. Fig. 3 with a. We recall the
surface profile of Fig. 4. The cones shdwo lateral length
Allowing for evaporation fundamentally changes the na-scales:(i) their size&, which for late times is much larger
ture of the growth instability, because it introduces a couthan (i) /p, the diameter of the tips and the valleys
pling between the local growth rate and the surface morpholf=0(1) in our rescaled unitswhich is independent of.

FIG. 3. Lateral mound sizé(t) for nine different evaporation

IV. ORIGIN OF FAST COARSENING

FIG. 4. Surface profile from continuum equatitevaporationn’®/3=10" %) at late times wheg~t2 Conical moundsright) form a
cellular structure visible in the gray-scale representatieft).
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Thus for a mound on d-dimensional surface the fraction that in the KMC simulations more atoms in fact evaporate
of the surface covered by the tip is €)Y. The surrounding from the upperparts of the mounds. This explains why the
trough has codimension one and a relative weight while  coarsening exponent observed for the lattice model is smaller
the major part of the surface consists of the sloped sides dhan 1/2: Given enhanced evaporation only on the tips,
the conical mounds. Av (&) is of the order ofa?/¢%, leading toé~ (a?t) V(@1 in

Evaporation is less pronounced on the mounds’ sides dimensions, hence=3 for d=2 as argued previously. To
whereas it is enhanced by an amount of ordéron the improve on this estimate, more detailed information about
horizontal parts, i.e., on the tip and in the surrounding valleythe shape of mounds and its coupling to the evaporation rate
As a consequence E(b) also holds for the continuum equa- would be needed. It is nevertheless interesting to note that
tion, whereuv, is the evaporation rate on the mounds’ sides the coarsening exponentz& 1/(d+ 1) is always larger than
and the enhanced mass loss from small mounds is mainithe value 1Z=1/(d+2) obtained for noise-induced coarsen-
due to the surrounding valley, i.eAv(£)~a?/é. So the ing[23], indicating that our conclusions will not be modified
timescale for mound coalescence tigsz/Av(f)~§2/a2 by shot noise.

(due to the stable slopay~ &), and it follows thaté~ at'/2. In summary, we have identified a general mechanism for
Incidentally, the same coarsening law was found in the onefast mound coarsening in unstable growth with desorption.
dimensional casg21]. While the detailed appearance of the effect is different in the

The initial increaset~t* is not due to evaporation and lattice model as compared to the continuum equation, in both
thus is the same for all values of (see Fig. 3 Together cases the key feature is the dependence of growth rate on
with the late time behavioé~ at®? this yields the estimate mound size. This gives us confidence that the phenomenon is
t,~a *=(xs//p)* for the time at which evaporation be- robust and will be observed under suitable experimental con-

gins to dominate the coarsening process. Rescaling time &ltions.

t/t, and length ag/tY*, and omitting the initial fast increase

a

puts all curves and in particular the crossover tifngsn top
of each other, as shown in the inset of Fig. 3.

V. DISCUSSION AND CONCLUSION
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